Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yi-Min Cai, Hua Fang, Qing-Le Zeng* and Yu-Fen Zhao

The Key Laboratory for Chemical Biology of Fujian Province, Department of Chemistry, Xiamen University, Xiamen 361005, People's Republic of China

Correspondence e-mail: qlzeng@xmu.edu.cn

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.039$
$w R$ factor $=0.116$
Data-to-parameter ratio $=8.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

(1S,4R)-N-[(S)-2-Hydroxy-1-phenylethyl]-7,7-di-methyl-2-oxobicyclo[2.2.1]heptane-1-carboxamide

The title compound, $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{3}$, has been obtained by the reaction of $(1 S, 4 R)$-7,7-dimethyl-2-oxobicyclo[2.2.1]heptane-1-carbonyl chloride with (S)-2-amino-3-phenylpropan-1-ol. The carbonyl functionality of the carboxamide group and the hydroxy group are involved in $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds.

Comment

During our continuing study of asymmetric synthesis, we have found a novel and useful chiral ligand, namely (1R,2R,4R)-7,7-dimethyl-1-[(S)-4-phenyl-4,5-dihydrooxazol-2-yl]bicyclo[2.2.1]heptan-2-ol, which may be derived from inexpensive D-camphor (Zeng, Liu, Cui et al., 2002; Zeng, Liu, Mi et al., 2002). The title compound, (I), is a key intermediate in the synthesis of this ligand, and has been obtained by the reaction of $(1 S, 4 R)$-7,7-dimethyl-2-oxobicyclo[2.2.1]heptane-1-carbonyl chloride and (S)-2-amino-2-phenylethanol (see Experimental). Bond lengths and angles in (I) (Fig. 1 and Table 1) are in agreement with values reported for a similar compound (Lalancette et al., 1999). The carbonyl group $\mathrm{C} 17=\mathrm{O} 3$ and hydroxyl group $\mathrm{O} 2-\mathrm{H} 2 \mathrm{D}$ are involved in intermolecular hydrogen bonds (Fig. 2 and Table 2).

(I)

Experimental

To a solution of (1S,4R)-7,7-dimethyl-2-oxobicyclo[2.2.1]heptane-1carbonyl chloride ($0.4 \mathrm{~g}, 2 \mathrm{mmol}$) in dichloromethane (25 ml) cooled in an ice-water bath, was added, in small portions, a solution of (S)-2-amino-3-phenylpropan-1-ol ($0.32 \mathrm{~g}, \quad 2 \mathrm{mmol}$) and triethylamine $(0.4 \mathrm{ml})$ in dichloromethane (10 ml) (Zeng, Liu, Cui et al., 2002; Zeng, Liu, Mi et al., 2002). The resulting solution was stirred at 298 K for 22 h . Water $(10 \mathrm{ml})$ was then added to the mixture in order to quench

Received 6 June 2005
Accepted 2 August 2005
Online 12 August 2005
the reaction. The organic layer was separated and the aqueous layer was extracted with dichloromethane. The organic layers were combined, dried over anhydrous magnesium sulfate and filtered. The solvent was removed under reduced pressure, giving 0.51 g of a colourless liquid (yield: 81.0%). Compound (I) was crystallized from the crude product by slow evaporation of an ethyl acetatedichloromethane (2:1) solution.

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{3}$
$M_{r}=301.37$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=10.117$ (5) £
$b=10.401$ (5) \AA
$c=13.934$ (7) \AA 。
$V=1466.3(12) \AA^{3}$
$Z=4$
$D_{x}=1.365 \mathrm{Mg} \mathrm{m}^{-3}$

Mo- $K \alpha$ radiation

Cell parameters from 3471
reflections
$\theta=2.4-27.9^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=273$ (2) K
Irregular fragment, colourless $0.20 \times 0.20 \times 0.12 \mathrm{~mm}$

Data collection

Bruker APEX area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2001)
$T_{\text {min }}=0.982, T_{\text {max }}=0.989$
4877 measured reflections
1644 independent reflections
1491 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.018$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-6 \rightarrow 12$
$k=-12 \rightarrow 12$
$l=-14 \rightarrow 17$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0648 P)^{2}\right. \\
\quad+0.1311 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.18 \text { e } \AA^{-3} \\
\Delta \rho_{\min }=
\end{array}-0.20 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

N1-C17	$1.300(4)$	$\mathrm{O} 2-\mathrm{C} 6$	$1.375(4)$
$\mathrm{N} 1-\mathrm{C} 11$	$1.430(3)$	$\mathrm{O} 3-\mathrm{C} 17$	$1.202(4)$
$\mathrm{O} 1-\mathrm{C} 13$	$1.181(4)$		
$\mathrm{C} 17-\mathrm{N} 1-\mathrm{C} 11$	$122.2(2)$	$\mathrm{O} 1-\mathrm{C} 13-\mathrm{C} 14$	$127.9(3)$
$\mathrm{N} 1-\mathrm{C} 11-\mathrm{C} 18$	$111.8(2)$	$\mathrm{O} 3-\mathrm{C} 17-\mathrm{N} 1$	$122.4(3)$
$\mathrm{N} 1-\mathrm{C} 11-\mathrm{C} 6$	$109.3(2)$	$\mathrm{O} 3-\mathrm{C} 17-\mathrm{C} 14$	$120.1(3)$
$\mathrm{O} 1-\mathrm{C} 13-\mathrm{C} 5$	$126.0(3)$	$\mathrm{N} 1-\mathrm{C} 17-\mathrm{C} 14$	$117.4(2)$

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 D \cdots \mathrm{O}^{\mathrm{i}}$	0.82	2.03	$2.847(3)$	173
Symmetry code: (i) $-x, y-\frac{1}{2},-z+\frac{1}{2}$.				

H atoms were placed in idealized positions $(\mathrm{C}-\mathrm{H}=0.93,0.98,0.97$ and $0.96 \AA$ for phenyl, methine, methylene and methyl H atoms, respectively, $\mathrm{O}-\mathrm{H}=0.82 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$) and were included in the refinement in the riding-model approximation. Isotropic displacement parameters were set at $1.5 U_{\text {eq }}$ (carrier atom) for methyl H atoms and $1.2 U_{\mathrm{eq}}$ (carrier atom) for other H atoms. In the absence

Figure 1
ORTEP3 (Farrugia, 1997) plot of (I), with displacement ellipsoids drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radii.

Figure 2
Part of the packing of (I). Intermolecular hydrogen bonds are represented by dashed lines.
of significant anomalous scattering effects, Friedel pairs were merged; the absolute configuration of (I) was assigned assuming that the absolute configurations of the starting materials were retained during the synthesis.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors thank the Fujian Foundation of Science and Technology (grant No. 2001 F008) and the Fujian Key Foundation of Science and Technology (grant No. 2002 H011) for supporting this work. We also thank Mr Z. B. Wei for technical assistance.

References

Bruker (2001). SAINT (Version 6.22), SMART (Version 5.625) and SADABS
(Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

organic papers

Lalancette, R. A., Coté, M. L., Smith, W. J. III, Thompson, H. W., Vanderhoff, P. A., Brunskill, A. P. J., Campana, C., Burshtein, I. \& Rose, J. P. (1999). Acta Cryst. C55, 1600-1605.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Zeng, Q., Liu, H., Cui, X., Mi, A., Jiang, Y., Li, X. S., Choi, M. C. K. \& Chan, A. S. C. (2002). Tetrahedron Asymmetry, 13, 115-117.

Zeng, Q., Liu, H., Mi, A., Jiang, Y., Li, X. S., Choi, M. C. K. \& Chan, A. S. C. (2002). Tetrahedron, 58, 8799-8803.

